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Vizard Mathematics

.1 LEONHARD EULER

Vhile it is general practice today to date the beginning of the modern theory
f complex numbers from the appearance of Wessel’s paper, it is a fact that
iany of the particular properties of V=1 were understood long before
Vessel. The Swiss genius Leonhard Euler (1707—83), for example, knew of
1e exponential connection to complex numbers. The son of a rural pastor, he
riginally trained for the ministry at the University of Basel, receiving, at age
sventeen, a graduate degree from the Faculty of Theology. Mathematics,
owever, soon became his life’s passion. He remained a pious man, but there
as never any doubt that he was, first, a mathematician.

Nothing could keep him from doing mathematics, not-even blindness for
e last seventeen years of his life. Euler had a marvelous memory—it was
1id he knew the Aeneid by heart—and so after losing his sight he simply did
ionstrously difficult calculations in his head. His reputation among his con-
mporaries was such that he was known as “analysis incarnate.” Many years
fter his death the nineteenth-century French astronomer Dominique Arago
id of him “Euler calculated without apparent effort, as men breathe, or as
agles sustain themselves in the wind.” When he died he had written more
rilliant mathematics than had any other mathematician, and to this day he
ill holds that record.

While a student at Basel Euler studied with the mathematician John Ber-
oulli (1667-1748) and, along the way, became friends with two of his sons,
icolas and Daniel, who were also mathematicians. Several years older than
uler, both soon recognized the younger man’s talents, and so when the two
ernoulli boys went off to the Imperial Russian Academy of Sciences in St.
etersburg in 1725 they began to lobby for a spot there for Euler as well.
icolas died in 1726, but Daniel continued his efforts and in 1727 Euler, too,
rived in Russia. This first of two stays in Russia would see his first great
1ccess, and in just a few years (1731) he was named an Academy Professor.

A few days before Euler first set foot in Russia, however, the Tsarina Cath-
rine I (widow of Peter the Great) died and the throne passed to a twelve year
ld boy. The regency that then ran the country had little sympathy for the
tellectual and expensive Academy, which was viewed as a collection of
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n ol #almre and Buler no doubt found the
place less than: mﬁww When Euler was invited by Frederick the
Great of Prussia to leave the Russian Academy and to take up a similar post in
the Berlin Academy, he was happy to accept, and there he stayed from 1741 to
1766. He left Berlin because four years earlier Catherine the Great ascended
the Russian throne, the intellectual climate there once again became attractive
(and Euler was allowed to write his own, generous contract), and his personal
relationship with Frederick had deteriorated. And so Euler returned to St.
Petersburg. There he remained until his sudden death of a stroke as he sat one
evening doing what he loved most—mathematics.

6.2 EULER’S IDENTITY

In a letter dated October 18, 1740 to his one-time teacher John Bernoulli,
Euler stated that the solution to the differential equation
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d%y
dx2+y 0, y(0)=2, and y'(0)=0

(where the prime notation denotes differentiation) can be written in two ways;
namely,

y(x) =2 cos(x),

y(x) _exr W/—_

The truth of Euler’s statement is evident by direct substitution into the differ-
ential equation, and the evaluation of each y(x) for the given x = 0 conditions.
Euler therefore concluded that these two expressions, each apparently so un-
like the other, are in fact equal, i.e., that

2cos(x) = eix + e~ ix,
It is evident from that same letter that Euler also knew that
2i sin(x) = eix — e—ix,

Just a year after his letter to Bernoulli, Euler wrote another letter (dated De-
cember 9, 1741) to the German mathematician Christian Goldbach, in which
he observed the near-equality
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~ hénd sidé is cos(In 2); that and #§ do not Yegine differ until the sixth decimal
place—only a genius or a quack would notice such a thing, I think, and Euler
was no quack!

One mathematician who definitely did have something of the quack to him,
and who was fascinated by the mystical appearance of the mathematical sym-
bols in Euler’s equations, was the Polish-born J6zef Maria Hoéné-Wroniski
(1776~1853), who became a French citizen. He once wrote that the number
is given by the astounding expression

%{(l V=D~ -V}

What could he have meant by writing such a thing? Wrofski’s entry in the
Dictionary of Scientific Biography uses such words as “psychopathic” and
“aberrant,” and notes that he had “a troubled and deceived mind,” but if one
replaces all the infinity symbols with 7, writes (1 = 9) in polar form, i.e., as
\/Z_eii“/“, uses Euler’s formulas to expand the complex exponentials, and
finally takes the limit as n — o, then Wroriski’s bizarre expression does re-
duce to 2m. (Not 1, as claimed, but perhaps Wroriski was thinking of the
leftmost infinity as being generated by #n, not just n—who can say now what
that odd thinker was thinking?)!
Finally, in 1748, Euler published the explicit formula

€= = cos(x) * i sin(x)

in his book Introductio in Analysis Infinitorum. To mathematicians, electrical
engineers, and physicists this is universally known today as Euler’s identity,
but as you will soon see he was not the first to either derive it or publish it.

Euler’s confidence in this astonishing expression was enhanced by his
knowledge of the power series expansion of e,

ey=1+y+%y2+%y3+iy +ly + e

If you set y = ix, then
€ =1+ (ix) + - (ix)? + L (ix)? LTSS
2! 3! 4! '

I am admittedly using this power series expansion for e, with y real, in a
rather daredevil manner when I substitute an imaginary quantity for y. I am
ignoring the question of convergence. I'm doing this because the issue is
addressed in great detail in any good book on analysis, where it is shown that
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th:nt toe:u:nonﬂiis ook & 1extbook. Rest assured, all of the series that I
W DOTH . :
write and treat as convergent in this book do converge.

Continuing by collecting real and imaginary parts, we arrive at
(c_ Ll )
e"‘=(l——lx2+lx4+ ---)+t(x—§ix -t

i i

But the expressions in the parentheses are the power sen.es exI:a;nsSt -

i icians since at lea -

i tively (known to mathematician :
cos(x) and sin(x), respec . : ; s, by
’s ti *s identity is derived in a new way. '

on’s time), and so Euler’s iden .

the way, provides the proof to a statement I asked you just to accept back in

section 3.2. Thus we have

ons for

sin(@) _y 1,2, 1a

x 3! St

1
. sin(-—n— 9)
Jim S0 _ 1im——12——=1,
x50 X n—yoe (,« 9)
2"

and so, with x = (1/27) 8, we have

claimed. ' ‘
" The power series expansion of e» was used by both Bernoulli and Euler in

some breathtaking calculations. In 1697, for example, John’Bemoulllh l:izdiit
to evaluate the mysterious-looking integral JY x¥dx. Her.eli ih(;lw e d .
First, using the trick I used in box 3.2 to calculate (1 + i)1*%, he wro

xx = eln(x") = exln(x),
and then set y = x In(x). The power series expansion then gave him
1
! e (xlnx)k < 1{ ¥ dx
Tdx = e b= Y, — j(xlnx) .
{x * '([{Z’O k! k=0k! 0

Using integration by parts it is easy to show that

; (~1)*k!
g(xlnx)kdx =m,

a result which is not hard to arrive at if you remember or look up, at the proper
time, lim,_, x Inx = 0. From this it immediately follows that
s x—
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6.3 EULER MAKEs His NAME

Bernoulli’s integral was a brilliant calculation, but his former student Euler far
surpassed that achievement by using the power series expansion of sin(y), the
imaginary part of e%, to accomplish what today is still considered a world-
class tour de force. All he did was solve a problem that had stumped mathe-
maticians for centuries! It also led him to write down a new function, called
the zeta function today, that is behind the greatest unsolved problem in all of
complex number theory; indeed, in all of mathematics. And that was so even
before Fermat’s last theorem was laid to rest in 1995. Here’s what he did.

A mathematical problem of long standing has been the summation of the
infinite series of the integer powers of the reciprocals of the positive integers.
That is, the evaluation of

S =

1
» —pforp=l,2,3,....

1 n

M

n

The answer for p = 1, which results in the so-called harmonic series, has been
known since about 1350 to diverge, a result first shown by the medieval
French mathematician and philosopher Nicole Oresme (1320—82).

This conclusion for S; surprises most people when they first encounter it,
but Oresme’s proof of it is beautifully simple. One simply writes S, as

1 1 1 1 1 (1)(11)(1111)
Si=l+—tot—d—t—+ o =l = [ = | o= = |+ -

56 78

and then replaces each term in each grouping on the right with the last (small-
est) term in that grouping; notice that this last term will always be of the form
1/2m where m is some integer. This process gives a lower bound on S, and so
we have

1 (1 1 1 1 1 1 1 1 1
S>l+—+|—+—[+|=t=F=+— |+ - =l —F == ...,
2 \4 4 8 8 8 8 2 2 2

2) 374

That is, we can add % to the lower bound on S, as many times as we wish,
which is just another way of saying that the lower bound itself diverges. But
then S, must diverge, too.

The divergence is incredibly slow, however. For the partial sum of S, to
exceed 15, for example, requires well over 1.6 million terms; after 10 billion
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terms the partial PO 2518 ainwt (0 reach 100 requires over 1.5 X
1043 terms. Finally, becauseof its conmection to Euler, I should tell you that in
1731 he found that, if Sy is the nth partial sum of §;, then lim,,_,'m {L?’i”) -
In(n)} does converge, to a number y now called Euler’s constant, which is y =
0.577215664901532 . . . . After m and e, <y is perhaps the most important
mathematical constant not appearing in elementary arithmetic. In 1735 Euler
calculated 1 to the fifteen correct decimal places given above, while in modern
times it has been calculated to many thousands of places.

There is an elegant way to express v in terms of S, using the power series
expansion for In(1 + z). This expansion is easily derived for all real z such that
—1 < z < 1, just as the Danish mathematician Nicolaus Mercator (1619-87)
did it in his 1668 book Logarithmotechnia. Write 1/(1 +2) =1 —z + 22 — 23
+ z4 — - - -, which you can verify by long division. Then integrating both

sides gives

1 , 1,
=7 —— +—=2" - +K,
Inl+z2)=z 2z 3

where K is the indefinite constant of integration. But since at z = 0 we have
In(1) = 0, we must then have K = 0, and we are done.

If you now successively substitute the values of z = 1,3, 3, 1, . . . into the
above expression, you can write the following formulas:
1=1n(2)+%—%+%—%+
11
LoD b b et etk
1 1 11
ER A T B A
Lo b ded e

If you add these relations together then all the logarithmic terms cancel
except one (the sum is said to telescope), and you will get

1 1 1 1( 1 1 )
—+=+ - +—|-In(r+)=—|{1+—5+—5+ -+ +
(1+2+3+ +n) n(n+1) 2 YRy "

1 1 1 1)
——ll+—+=+ - +—5

3( 23 33 n’

1 1 1 1)
+—|l+—FF—F+ - = -

4( 24 34 n*

147

NI"‘




An Imaginary Tale

THE STORY OF V -1

With a new preface by the author

Paul J. Nahin

PRINCETON UNIVERSITY PRESS

PRINCETON AND OXFORD

| 1993




